Example: Mealy Machine_{JP}

Define a Mealy machine that prints the one's complement of an input bit string. That is, the machine transforms every 0 to 1 and every 1 to 0. For example, the input string 0010 produces output 1101.

Recall that an Mealy machine is defined as a 5-tuple (Q, Σ , δ , q0, F) where

- Q is a finite set of states
- Σ is a finite alphabet of symbols for forming the input string
- Γ is the finite set of symbols in the output alphabet
- δ is the transition function, $\delta: Q \times \Sigma \rightarrow Q \times \Gamma$
- q0 is the start state (q0 Q)

Sample Solution

What are the input and output alphabets?

In this case, the input alphabet and output alphabet are identical: $\Sigma = \Gamma = \{0, 1\}$

How is the transition function defined?

Consider that every transition must output the appropriate symbol for the input symbol just read. In this case, every $\mathbf{0}$ in the input must result in an output of $\mathbf{1}$. Likewise, every $\mathbf{1}$ in the input must result in an output of $\mathbf{0}$.

Note that when you define a transition for a Mealy machine in JFLAP, you must enter both the input symbol (left column) and the output symbol (right column).

Here is the sequence that demonstrates entering the two appropriate transitions:

Here is the resulting Mealy machine that prints the one's complement of an input bit string (see MEALY_complement.jff):

Now step through input strings and observe the output. For example, the input string **0100101** produces output **1011010**.

	•	•			J	FLAP :	(MEALY_complement.jff)	
Fi	le	Input	Test	View	Convert	Help		×
			Simulate: 1011010					
Г								
							1;0	
							0;1	
	(q0)							
						l		
							~	
	Xq	<u>)</u> 101:	1010	{				
[010	0101						
	Ste	ep Reset	Freeze	Thaw	Trace Remo	ove		